
DEPARTMENT OF AEROSPACE ENGINEERING

COLLEGE OF ENGINEERING AND TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VA 23529

SUBSONIC AND SUPERSONIC JET NOISE CALCULATIONS

USING PSE AND DNS

Dr. P. Balakumar, Principal Investigator
Farouk Owis

Department of Aerospace Engineering

FINAL TECHNICAL REPORT

For the period ending September 30, 1998

Prepared for

NASA Langley Research Center
Attn.: Ms. Barbara S. Thomson

Grants Officer

Mail Stop 126

Hampton, VA 23681-2199

Dr. Michele Macaraeg, Technical Officer

Under

Research Grant NAG-1-2054

ODURF File No. 182431

March 1999



Jet stability and Noise Prediction

Using Parabolized Stability Equations



Prediction of Supersonic Jet Noise

P. Balakumar

Aerospace Engineering Department,

Old Dominion Universi_, Norfolk, Virginia 23529-0247

Abstract

Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations

(PSE) method. The evolution of the instability waves inside the jet is computed using the PSE

method and the noise radiated to the far field from these waves is calculated by solving the

wave equation using the Fourier transform method. We performed the computations for a cold

supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2

and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are

observed between the computed and the measured (Troutt and McLaughlin 1980) results.

1. Introduction

In this work we computed the noise radiated from supersonic turbulent jets using the PSE

(Parabolized Stability Equations) method. Jet noise can be divided into three categories: (1)

shock-induced screech tone noise; (2) shock-induced broad band noise; and (3) turbulent mixing

noise. The screech tone appears in an imperfectly expanded jet as discrete band in the front part

of the jet. The screech tone phenomena is very complex and it is believed that the toroidal and

helical vortices which shed at the lip of the nozzle interact with the shocks when they propagate

downstream and makes the shock to oscillate and this radiates sound in the upstream direction

at discrete frequency. In an imperfectly expanded jet, the shock-cells formed by the oblique

shocks or the expansion fans generated at nozzle lip interact with the large scale turbulence

and generate broad band noise. The dominant part of the broad band shock-associated noise

is comprised of a spectral peak with a relatively narrow half-width. Turbulent mixing noise is

the noise component which is contributed from the large-scale and small scale turbulence in the

jet. For a perfectly expanded supersonic jet, the noise is completely generated by the turbulence

in the jet and the predominant part of the noise is radiated in the downstream direction in

the range between 25-45 ° . It is observed that at low Reynolds numbers the noise is radiated

at a discrete frequency which is closer to the most unstable instability wave for that jet. At

moderate and high Reynolds numbers there is discernible peak but they become broad band.

These similarities between the noise generated from the high and low Reynolds number jets

imply that the noise generation mechanisms in supersonic jets are same at different Reynolds

numbers. Several experiments were performed to identify these mechanisms ( McLaughlin et al.

1975, 1977, Morrision and McLaughlin 1979, 1980, Troutt and McLaughlin 1982, Seiner et al.

1993) and it is concluded that the dominant part of the turbulent mixing noise of high Reynolds

number supersonic jets is generated by the large-scale coherent structures. It is also concluded



that theselarge-scalecoherentstructuresare the instability wavesof the jet (Tam 1971, 1972,
Morris and Tam 1977,Tam et. al. 1991).

Thejet columncanbedivided into threeregions,namely,laminar,transitionalandturbulent.
Theextentof the laminarandtransitionalregiondependson theReynoldsnumberandtheMach
number. The laminar regionextendsa few diametersfrom the exit and the disturbancesgrow
exponentiallyin this region. Furtherdownstream,when the amplitudeof thesedisturbances
becomeslarge,theyinteractnonlinearlyandthensaturate.Theseinstabilitywavesthendisengage
their coherenceand disintegrate,and the flow becomesturbulent. In a seriesof detailed
experiments(McLaughlin et al. 1975, Morrison and McLaughlin 1979, 1980, Troutt and
McLaughlin 1982),it wasconfirmedthat most of the noise is generatedin this regionwhere
the disturbancessaturateand decay. It is also identifiedthat this region is alwayscloseto the
end of the potential core region.

Severalmethodsareexploredin practiceto computethe turbulentmixing noisegenerated
from supersonicjets. One is the multiple scaleapproach( Tam 1991). In this methodit is
assumedthattheflow field inducedby thelargescalestructuresin a turbulentjet canbemodelled
asthe flow field generatedby the evolution of instability wavesin a given turbulent flow. The

mean flow is obtained from the experimental measurements or by solving the Reynolds averaged

Navier-Stokes equations. The local growth rate, the wavenumber and the eigenfunctions of a

disturbance with a constant frequency and a fixed azimuthal wavenumber are obtained by solving

the compressible Rayleigh's stability equations and the nonparallel corrections are determined

using the multiple scale and the adjoint method. After computing the flow field in the near field of

the jet, the acoustic field in the outer part of the jet is calculated by solving the wave equation.

In the second method, the mean flow field and the flow field associated with the large scale

structures are computed by solving the Large-Eddy-Simulation equations with the subgrid scale

modelling (Mankbadi et. al. 1994). The noise in the far field is again obtained by solving the

linearized Euler equations. In the third method, the complete Navier-Stokes equations are solved

(Mitchell et. al. 1996) to obtain the inner and the outer acoustic fields. The last two methods are

more accurate and do not make any assumptions other than the subgrid scale modelling in the

LES approach. However, they are computationally very expensive compared to the first method.

In this work we followed the first approach and compute the flow field in the inner part of the

jet using the PSE method instead of using the multiple scale method and compute the acoustic

field in the outer region by solving the wave equation with the pressure obtained from the PSE

as the inner boundary data. We obtained the mean flow by curve fitting the experimental data

by cubic splines.

2. Formulation

We are concerned with the evolution of a small disturbance of a single frequency and a fixed

azimuthal wavenumber inside an axisymmetric supersonic jet and the noise radiated from this

disturbance field to the outer part of the jet. Figure 1 shows the schematic and the coordinate

system that we used in the analysis. We perform the computation in two steps. In the first step,

we compute the flow field inside the jet using the PSE method and in the second step we solve



the waveequationto computethe acousticfield in the far field of thejet. Since weareseeking
linearsolutions,the disturbancequantitiescan bewritten in the form

irnO - iwt
q(x, ,-,o, t) = , (1)

where x, r and 0 are the axial, radial and the azimuthal coordinates; m is the mode number in

the azimuthal direction, _ is the frequency and t is the time; q is a vector,

q = {u,v,w,p,T} T, (2)

and u, v and w are velocity components in the x, r, and 0 directions, p is the pressure and T is

the temperature. We non-dimensionalize the variables as follows:

velocity - Uj : jet exit velocity

Temperature - To : ambient temperature

Density - Po : ambient density.

Mach number based on the jet exit conditions - M .- u----_--
J-- @-_"_f"

Mach number based on the jet exit velocity and the free stream temperature - Mo=_.

2.1 The Parabolized Stability Equations

In the parabolized stability equations (PSE) approach, one attempts to construct an approxi-

mate solution of the full Navier-Stokes equations. The idea was first introduced by Herbert(1991)

and applied to linear and non-linear Blasius boundary-layer flow by Bertolotti (1992). Now it

has been developed and has been applied to two and three-dimensional incompressible and

compressible boundary-layer flows and supersonic jets (Chang et.al. 1994 , Malik et.al 1994,

Balakumar 1994, Malik et.al 1997). We give a brief description of PSE for a general flow and

apply to jets as a special case.

In the linear parallel stability analysis, the disturbance quantities are written in normal mode

form. If q(x,y,z,t) is a flow variable in normal mode analysis, we write

q(x,y,z,t) = _(y)e i f adx + i_z - iwt (3)

Here w is the frequency of the disturbance, /3 is the azimuthal or spanwise wave number, and

c_(x) is the wavenumber in the axial direction. The eigenfunction is q(y) which is function

of y (normal coordinate) only. We substitute this expression into the linearized Navier-Stokes

equations and, assuming the flow is parallel in the streamwise direction, we obtain an ordinary

differential equation for _(y). This equation, along with the homogeneous boundary condition

at the wall (for boundary-layer flow) and in the free-stream, forms the eigenvalue problem for

the wave number c_ and for the eigenfunction _(y).



In practice,the meanflow is not constant,but variesin the streamwisedirection. Sincethis
variation is relatively slow, the wavenumbera and the eigenfunction _(y) vary slowly in the

streamwise direction. In the PSE approach, we use this fact to construct an approximate solution

to the Navier-Stokes equations. In the PSE formulations, we write the disturbance quantities as

= O( f (4)

where q(x,y) represents the amplitude part and the exponent as the wave part.

The first and the second derivatives of q(x,y,z,t) are

ox°q= +

02002q - -a2(x)O(:c,y) + z-d-_zq(x y) + 2ia + _ jOX 2

¢i f ctdz+iflz-i_ot.

(6)

Since the amplitude part q varies slowly in the x direction in the PSE approximation, we neglect

°2q and write the second derivative as

02q _{ .da Ogl }- -a2(x)gl(X,y) + z-d-_xq(x,9) + 2ia-_z

¢i f adz+i/3z-iwt.

(7)

Therefore, if we substitute this approximation into the Navier-Stokes equations, the second

derivative in the x direction drops out and the system of equations is parabolized. The solution

may be found by marching in the x-direction which is the major advantage of PSE.

The first step of the procedure is to start, as in any other parabolic problem, with a known

solution at x=x0, _(x=x0,y), a(x=x0), assume a(x=x0+Ax)=a(x=x0), march the PSE equation to

the next station x=x0+Ax, and solve for 0(x=x0+Ax,y). The second step is to compute the new

a(x=x0+Ax) from the computed 0(x=x0+Ax,y). The problem is that since 0 is a function of y,

and q can be any physical quantity (e.g., velocity, temperature, mass flow rate, etc.), it is not

clear how to compute o_. This problem arises in the experiments too. If we want to measure

growth rate using hot wires, we face the same problem as to which quantity and at what location

we want to measure. Therefore in a nonparallel flow, there is no unique wavenumber as in the

parallel linear theory. We call the wave number we compute the "wave number based on some

quantity (e.g., velocity, temperature, mass-flow rate)". Usually the wave number is computed

at the location in the shear layer where the flow quantities become maximum. For example, if
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we choose to compute the wave number c_ at the location where streamwise velocity u peaks,
c_ is obtained from the relation

(8)

where _7 is the location where u peaks and i=VrZ-] -. In the third step after the newc_(X=Xo+AX)

at X=xo+Ax is determined, the marching computations are repeated at this location with the

newa(x=xo+Ax). This procedure is continued until the change in a is less than some prescribed

value (-10--1°). After the convergence is obtained at this station, we march to the next station.

This basically explains the PSE method. Next we briefly describe the governing equations and

the numerical procedure that we used to solve the PSE equations.

Let xi, x2, x3 be a set of generalized orthogonal curvilinear coordinates and the metric

coefficients are hi, h2, h3 and the velocities in the direction 1, 2, 3 are ui, u2, u3. The mean

flow quantities are represented by Q0 = {U1, U2, U3, T,p, p}T and the disturbance quantities are

represented by Q' {u_, t , r,}T= u2,u3,0t,p _, . Therefore, the total variables are

Q = QO + Q, (9)

Substituting this in the governing equations and substracting the mean-flow terms, we obtain the
I t

equations for Q. As discussed earlier, Q is split into the amplitude and wave part

_ _ i (c_dzl+i_3r_-itot
Q' = O('zl,,_3Je _' (10)

Substituting this expression into the governing equations for Q_ and neglecting the nonlinear

terms we obtain the following linear PSE equations for (_,

AO2Q OQ

- zoo0
D _--_Qzl+ OxlOx3"

(11)

Here, A, B, C, D and E are (5 x 6) matrices which are functions of QO and its derivatives, ,;, a, fl

and the metrices hi, h2, h3. These equations are solved by first discretizing the xl derivative by

two point upwind scheme and second by applying the fourth order central difference scheme in

the normal direction. When we apply this to an axi-symmetric jet, the variables and the metrics

becomes xl=x, x2=0, x3=r, hi=l, h2=r, h3=l and fl=m. The velocities in the axial, azimuthal

and in the radial directions are u, w and v.

Since the governing equations are singular at r=0, the appropriate boundary conditions and

the governing equations have to be derived separately, We use L'Hospital's rule at r=-0 and obtain



the appropriategoverningequationsandthe boundaryconditions. The boundaryconditionsat
r=0 takesdifferentform basedon theazimuthalmodenumberm. Theytakethefollowing form:

m=0

0u 00 (12)
--=0, v=0, w=0, --=0.
Or Or

m=-_l

(13)
u=O, w+i I-mlv=O, 0=0.

m>2

u=0, v=0, w=0, 0=0.

In the far field r --+ oc, we use the condition

(14)

u=0, v=0, w=0, 0=0. (15)

In the computations, we impose these boundary conditions at r=-5Odj, where dj is the diameter

of the jet.

2.2 Wave Equation

To compute the acoustic field in the far field, we solve the linearized Euler equations using

the Fourier Transform technique. In cylindrical coordinates the linearized Euler equations for

the amplitude part _(x, r) become

109
- iaff, = ----

?Or'

im.
- iw_ = -=--'p,

pr

1o9
- iwfi = ....

?Ox'

-i_i_ + -_ + N + + =0.

(16)

Eliminating the velocity components, we obtain the wave equation for the pressure

02t5 0215 lOib ( m2_Or2 + _ + - + -_M2w 2,._ _ )_=o.
(17)



The boundary conditions are

p--+ 0 &S F ----+ ,_

Hx, ,'o)= _o(x), _t ,- = ,'o. (18)

Here r0 is the height at which the lower boundary for the wave equation is located and this line

is in the region where the mean velocity becomes almost zero ( Figure 1). Usually, we take r0-

2-3 diameters of the jet. h0(x) is the pressure distribution along the line r=r0 which is known

from the PSE calculations. The wave equation (eq. 13) is solved using the Fourier transform

technique and the solution is given by

oo

,6(_,,-)= f ,6o(k_)

)_2 _2= k z -- -_m2w 2,

I(m ( r,_ )

I(m (r0 A) eik=Zdkx,

(R_,a(_) > 0).

(19)

Here Km is the modified Bessel function of second kind of order m and the integration is along

the contour C, which does not cross any branch cuts in the complex kx - plane and is shown in

Figure 2. We evaluated this integral numerically. For comparison and to determine analytically

the intense noise radiation direction and the dominant wavenumber region, it is advantageous

to evaluate this integral asymptotically for large distances. As it was done by Tam and Burton

(1984), we rewrite this expression in spherical coordinates (R, X, _b). In the new coordinate

system, the pressure expression becomes

oo

j6(x,r)= f po(kx) Km(RsinXA)eik_cosxRdkx
K_(roA)

--00

(20)

For large R, the Bessel function and the integral become

1
7r

KmtR inX )=

_(x, r) = 2RsinX Km(roA) ei(k'c°sX+isinXA)Rdkz"

(21)

This integral can be evaluated using the stationary phase method and the integration yields

2{ _o(MwcosX) }p(R,X,¢,t) = -fi Km(roMwsinX)

ei{ M_R+mO-_t-½(m+ l )r },

(22)



and the stationary point is given by

kx = MwcosX. (23)

From this expression for a fixed R we can determine the maximum acoustic pressure and the

direction of the maximum pressure and the wavenumber by evaluating the expression in the

bracket in eq. (22)..

3. Results

Computations are performed for a cold supersonic jet of Mach number Mj=2.1. The mean

flow velocity profiles are obtained by curve fitting the experimental data which is given in

McLaughlin, Seiner & Liu (1980). We used the same empirical formulas as used by Tam &

Burton (1982). The jet is divided into three regions as core, transitional and fully developed

regions. In each region, different functions are used to represent the measured velocity profiles.

The functions used are:

Core region : 0 < x < xt

-U = exp (r < h),}(h _<'9.
(24)

Transition region : xt < x < x.f

" (r < h),}2] (h_< r).

(25)

Fully developed region : x > xf

:: t. (26)

Here h(x) is the thickness of the core region, b(x) is the height from the end of the potential core

to the half velocity point, U=.5. xt and xf are the locations of the end of the core and the start of

the fully developed regions from the nozzle exit. From the experimental results of McLaughlin,

Seiner & Liu (1980), it is found that the core region extends up to five diameters and the fully

developed region starts at eight diameters, b(x) is determined by approximating the measured

thickness of the shear layer by a cubic spline curve. The variation of h(x) in the core region and

the variation of Uc(X) in the fully developed region are obtained from the conservation of axial

momentum condition. In the transition region, the variation of h(x) and uc(x) are obtained by

matching their absolute values and their derivatives at both ends. Figure 3 shows the measured

and the curve fitted distribution of b(x) and figure 4 shows the corresponding variation of the

centerline velocity Uc and the thickness of the core h(x) along the axis of the jet. The temperature



distributionis obtainedby assumingthat the total temperatureis constantacrossthejet andthe
radial velocity is obtainedby integratingthecontinuity equationin the radial direction.

After the meanflow profilesareobtained,the evolutionof thedisturbancesinsidethejet is
computedusing the PSEmethod. In all the previouscomputations,Euler equationsaresolved
to obtainthe flow field inside thejet. The main reasonis thatwe aresimulatinga turbulentjet
and it is difficult to define a Reynoldsnumber in this caseand further that the flow dynamics
are of the inviscid type in free shearflows and the Reynoldsnumberhas little effect in the
results.The PSEequationsarederivedfrom the completeviscousNavier-Stokesequationsand
weperformedthecomputationsasa viscousproblembut fixing theReynoldsnumberarbitrarily
at largervalues- 10 6. We present the results for two Strouhal numbers St=.2 and .4 and for the

helical mode m=l which is the most amplified disturbance in an axisymmetric jet.

Figure 5 shows the evolution of the mass velocity fluctuations with the axial distance obtained

from the nonparallel PSE calculations for the Strouhal numbers St=.2, .4 and m=l. The mass

velocity fluctuations are measured at the radial location where they are maximum. Figures 6

and 7 show the real part and the amplitude of the pressure distribution in the axial direction at
r

the radial location _ = 3 for two Strouhal numbers St=.2 and .4. We observe that the pressure
X

peaks at about _ -- 8 and decreases further downstream and we also notice that the wavelengths
are smaller at St=.4 than that at St=.2.

Figures 8 and 9 show the spectral distribution of the pressure for the Strouhal numbers

St=.2 and .4 obtained by taking the Fourier transform of the pressure distribution shown in the

figures 6 and 7. The branch points in the complex kx plane are located at kx = +_M. For

St=.2 and .4 these points are located at kx---Z-_l.922 and 3.844 respectively. The waves with the

wavenumbers larger than these values travel subsonically relative to the free stream and hence

will not radiate noise to the far field. Equation (22) shows that the far field noise is determined

by the quantity and the noise radiation direction and the wavenumber is related by the

eq. (23). In figures 10 and 11 we plotted these two quantities for the Strouhal numbers St=.2
O

and .4 respectively. The figures show that the intense noise is radiated at an angle of 45 from
O

the axis for the frequency St-.2 and the angle is 37 for St=.4. Figures 12 and 13 show the

sound pressure levels (SPL in dB) radiated from the instability waves with the frequency St-.2,

.4 and m=l to the far field obtained by integrating the eq. (20) numerically. We see that the

noise is radiated in a wedge shaped region and the intense noise isradiated in a fixed direction
which is inclined at an angle of 44 for St-.2 and is inclined at 37 for St-.4 which agree with

our earlier prediction from the asymptotic theory. Figures 14 and 15 show the experimental

measurements of sound pressure levels by Trout and McLaughlin (1982) for a jet excited at

St=.2 and .4. In figures 12 and 13 we matched the computed sound pressure levels with the

experimental measurements shown in figures 14 and 15 at one point _x = 30 and _r = 20.

It is seen that the agreement between the experiment and the computation is very good. In
O

the experiment the noise is radiated at an angle of 44 and 36 which are exactly same as that

predicted from the computations. To understand the character of the flow field inside the jet, in

figure 16 we plotted the variation of the quantity



along the axis. Herec is the phasespeedof the instability wave anda_is the speed of sound

in the freestream. If this quantity is positive the wave is travelling subsonically relative to the

freestream and if it is negative it is travelling supersonically. We observe from the figure that

the waves travel supersonically for the first 5 and 7 diameters for St=.2 and .4 respectively.

After that they travel subsonically and further downstream they again travel supersonically. This

figure depicts that the most of the noise is radiated from the first few diameters of the jet

4. Conclusions

In this work, the evolution of a small disturbance of a single frequency and a fixed azimuthal

wavenumber inside an axisymmetric supersonic turbulent jet is computed using the PSE method

and the noise radiated from this disturbance field to the outer part of the jet is evaluated by

solving the wave equation using the Fourier transform method. The PSE computations are very

efficient and take about 5 minutes on a SUN workstation. Computations are performed for a jet

of Mach number 2.1 at two Strouhal numbers St=.2 and .4. Good agreements are found between

the computed and the measured sound pressure levels. It is also observed that the waves travel

supersonically for the first few diameters from the jet exit and after that they travel subsonicaily.

This agrees with the observation that most of the noise in a supersonic jet is radiated from the

first few diameters of the jet.
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Figure 1. Schematic diagram of an axisymmetric jet.
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Figure 2. Integration contour in complex kx plane.
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1. Introduction:

The development of high speed civil transport plane requires reducing the jet exhaust

noise. The computations of the jet noise radiated from the mixing layer may be divided

into two parts. The first part is the evaluation of the near-field source and the second part

is the computations of noise in the far field. In this work, we concentrate on obtaining the

sound source using the direct numerical simulation of the full unsteady Navier-stokes

equations.

Experiments by Laurence (1996) have shown that the sound power emitted from the jet is

greatest within 4 to 5 diameters downstream and then decays through a transition region.

This region is characterized by large vortical structures and is not fully turbulent (Soh

1994) which gives the motivation that we solve the unsteady flow equations using the

direct numerical simulation (DNS) to provide the sound source for an acoustic

computation of the far-field noise. Due to the limitations of the computational facilities

available at the present time, the linearized Euler equations or the linearized wave

equation is used to calculate the noise in the far field. The linearized Euler equations

approach neglects both viscosity and nonlinear effects. The viscosity effects can be

neglected since the free shear layer in the far field is essentially inviscid (Mankbadi

1992). The nonlinear flow effects and source generation are confined to the near field

(Shih 1995) and sound propagation in the far-field can be modeled by linear instability

waves. Tam and Morris (1980) calculated the noise in the far-field using the linear

instability waves.

In order to evaluate the sound source using DNS, the simulation must be performed using

numerical techniques with minimum distortion and diffusive characteristics. The

numerical errors get worth for high Reynolds number flow simulations. Typically, free

shear layer flows of interest have very high Reynolds numbers. Therefore, higher order

accurate numerical schemes with minimum dissipation and dispersion errors are needed.
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Part of this study is dedicated to the investigation of the accuracy of different numerical

schemes.

The treatment of the boundaries is very important in getting an accurate solution of the

Navier-stokes equations. Various computational techniques have been developed in the

past to minimize the reflections of the out-going waves. Some of these techniques are

based on the characteristics of the equations such as Thompson (1987) and Giles (1990).

Other methods are based on the far-field asymptotic solution (Bayliss 1980, Enquist

1979, Hagstrom 1988, Tam 1993 and Tam 1995). In addition, a buffer zone technique has

been developed in which the mean flow is altered gradually to be supersonic in a buffer

region adjacent to the artificial boundaries (Givoli 1991, Street 1989 and Ta'asan 1995).

A different approach has been proposed by Hu (1996) to damp the disturbance

exponentially in a short layer called perfectly matching layer. We devoted part of this

work to investigate different types of boundary conditions which will give minimum

wave reflections near the boundaries.

In order to evaluate the jet stability and its radiated sound, the jet mean flow has to be

computed. We used the boundary layer equations to solve for the jet mean flow. The

equations are solved using two-point compact finite difference scheme. In addition, the

linear stability theory is used to calculate the most unstable frequency for the jet and its

eigenfunctions which will be used to excite the jet inflow boundary in DNS code.

linearized Navier-stokes equations are used for the linear stability analysis.

It is widely believed that the large vortical structure and the vortex pairings are

responsible for jet noise radiation (Colonius and et al. 1997 and Mitchel 1995), we

investigated the sound generated by vortex roll-up and pairings by forcing the inflow

with the most unstable frequency f and its subharmonics f/2 and f/4.
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1. Governing Equations:

Navier-Stokes equations will be used to evaluate the near field source of jet noise and to

compute the linear and nonlinear instability waves of the mixing layer. The equations are

written in conservative form, cylindrical coordinates and for 3-d axisymmetric jet. The jet

radius, exit velocity, temperature and density (q , uj, T 1 , p j ) are used to normalize the

equations.

OQ +OF 1 OrG__+___+---- _
Ot Ox r Or

"p

pu

Q=pv

pw

.p E

1 OH
-S (2.1)

r 06

F

pu

p+ p u 2 -a,_

p U V- axr

p u w- axo

(pE+p)u-ua= _ _ kOTI
vax, wax - J

a_

pl;

p u v - O'xr

P + P v2 - [_rr

p vw- O'ro

_kOTI(pE+p)v-uaxr --Varr --Ware _'_l

or l
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9W

p u w - O'xo

H= O vw- (Y,.o

p + ,o w 2 - Croo

(p E + p)w - uO'xo - VCrrO- wcroo - ----

p=O'-l)p E--_(u + +w 2)

T- P
2

7Mi P

k aT

raO

S= 1
r

-0

0

p + p w 2 _ rYoo

- p vw + tYrO

0

Here Q is the unknown vector, F, G, and H are the fluxes in x, r, 0

respectively; S is the source term. The shear stresses are calculated as follows:

directions,

2/1 0u v av law

cru=_e(2_x r 0r r_--6 ")

_ 2/1 .23w 2v Ou Ov)
°'°°-_e(r-_-_ r 0x 0r

2/1 (23v v 3u 13w
O'rr=3R----e ar r-_x r_ -')

=v__(Ou+av)
tY_r Re "Or r)x

p . 1 Ou 3w.

=&(!av aw w)
cr_e Re'ra6 _r r

and Re- pj uj rj M j = uj
u, '  Rr,

The viscosity is calculated using Sutherland's law

/./= T3/2 Tj +110.4
T +110.4

and the thermal conductivity is calculated from k -
/1

O'-I)M_ Pr Re
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2. Numerical Schemes:

MacCormack type schemes with operator splitting and high order accuracy developed by

Hixon (1997), up to sixth order accurate in space and fourth order accurate in time, will

be used in this simulation. The operators are applied in the following symmetric way:

Q..2 = LzxL2,L2o_o_,LaxQ.

Where Lx, Lr and L0, are one-dimensional operators in x, r and 0 directions that are

applied to these one-dimensional equations

Qt = - Fx

Qt = - Gr + S

Qt = - H0

The operators will be alternated with symmetrical variants such that the scheme will

maintain the accuracy. Let L1 be the operator with forward finite difference in the first

step, then L2 is the operator with backward finite difference in the first step.

Using Rung-Kutta, the equations are integrated in time as follows:

Q, = ---_ [F(Q)]

h_ = -At d____I[F(Q" )]
dx

d h
h z =-At-- [F(Q" +o'zha) ]

dx

h3 = _bt___ yd[F(Q" + o'3h2) ]

dx

d b

h 4 = -At-- [F(Q" + a4h 3)]
dx

h 5 = _At df
dx

[F(Q" + 0(5h4) ]

d b
h 6 =-At-- [F(Q" +a6hs) ]

dx

Qn+l Q,_ + _lhl + f12h2 + _3h3 + f14h4 + fish5 + f16h6
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Accuracy az _3 _ 0_5 0_6 _1 _2 _3 _4 _5 _6

Second I o 0 0 0 1/2 0 0 0 o 0

order

Fourth I/2 1/2 I 0 0 1/6 1/3 1/3 1/6 0 0

order

Multi-step
(4-6)

First step
Second

step

I/2 1/2 1 0 0 1/6 i/3 1/3 i/6 0 0

•3533 .9996 .1522 .5342 .6039 .0468 .1373 .1710 .1976 .2823 .1651

Space discretization:

MacCormack schemes with higher order accuracy up to sixth order and minimum

dispersion error are used. The forward and backward discretization for the fluxes are

written in this form.

dx ) = a_,F/_, + a0F/ + a,F/+, + a2Fi+2 + a3F/+3

dF_ b
-_x j = a_,F/+, + aoF i + a, Fi_, + a2Fi_ 2 + a3F/_ 3

The accuracy of MacCormack schemes is increased to sixth order accurate by adding a

point ( a3 ) to the discretization in the backward and forward directions. Also, the

dispersion error is optimized for these schemes by adding another point (a _t) such as 4/4,

6/4 and DRP/opt. Schemes as shown in the following table.

Scheme a ._ ao ai a2 a3

0 0 02/2

4/2

6/2

4/4

6/4

DRP/opt

0

0

-2

6Ax

-9

30Ax

- .30874

Ax

-1

&r

-37

30&x

- .63254

Zk_

1

z_c

45

30Ax

36

30Ax

1.2330

Ax

- .3334

Ax

0

1

30Ax

1

30Ax

.04 ! 68

Ax
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3. Boundary conditions:

4.1 Inflow B.CS:

For supersonic flow, all the flow variables are specified at the inflow boundary using

Q = Q_ + E Qdist

2

Qdis, : Z Real[Q_ (r)e-'_°''z*÷i"°]
k=O

where

Qm is the mean flow variables,

Qk( r ) are the eigenfunctions of the flow variables which are obtained from the

linear stability code for the most unstable frequency o) and its subharmonics 03/2 and o)/4

and n is the azimuthal wave number. _ is the amplitude of the disturbance at the inflow

boundary.

For subsonic flow, one flow variable is obtained from the interior points using the

continuity equation and the rest of the flow variables are specified at the boundary as

specified above.

c3p +apu+apv l apw_ pv
at Ox Or r _)6 r

The continuity equation may be written in the following characteristic form:

3°P----ff-u+[_ +l (?q + _)]/ c2 +-_rV + l c3p w -_tr 06 P Vr

where

& =(u-c)( -pU-_x)

22 =u(c2 bPox _x)

Ou
25 = (u + c ) (Ow-P+ P c-_x )ox

For non-reflecting inflow boundary:

_'.2-'_.5=0 and _,_ is calculated from the interior points.
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4.2 Centerline Conditions:

Different techniques will be applied to overcome the singularity at the centerline for 3-D

jet:

• Using the average values of the flow variables on the ring r=Ar. Prior to taking the

average on the ring r=Ar, some conditions have to imposed on the ring r=0 based on the

physics of the flow at the centerline. The first condition is obtained by noticing that the

multivalued nature of the flow field doesn't extend to pressure, temperature, density and

axial component of the velocity. The radial and azimuthal components of velocity have

multivalued at the centerline ( Griffin et al. 1979). The second condition derives from the

fact that the true velocity vector through any point can have only one direction in

physical space, Since in our problem there is a symmetry plane (x, r plane) through which

there can be no mass flow. If the velocity vector at a given point x on the centerline has

the value Uavg, then the radial and azimuthal components (v, w) must be:

v(x,r,6) = U_g cos 6

w(x,r,O) =-U.vg sin 0

To determine Uavg, one computes the average of the velocity vector U

On the ring using

U (x,r,6) = v(x,r,6) cos6 - w(x,r,6) sin6

The average on the ring r=Ar is computed using this equation:

k max

_ 1 y__q ,j=2, I=l,imax and l=l,kmax
qi.y-l,t k max k=l i,),k

where q = (p u U p T E

• Considering the centerline as an interior point with r=e and using the same governing

equations.

• Using Navier-stokes equations in Cartesian coordinates at the centerline only and using

the following transformations to switch from Cartesian to polar coordinates and vice

versa.

[ul] =[cos0-sinO] Iv] Iv]= IcosO sinO Iu_i]u l_sin 0 cos0 J ' L- sin 0 cos0 u
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For 2-D jet, a new set of equations will be derived using L'Hospital rule.

equations will be applied with the following symmetric conditions:

3p _ Ou _ ap _o
Or Or Or

v=O

These

4.3 Outflow and Radiation B.CS:

Different outflow and radiation B.CS will be investigated in this study.

i. Thompson's Characteristic B.CS:

The governing equations (1) could be written at x=L in the following characteristic

form"

d 1

d2

d3

d4

d5

where

1 _rG 1 OH
OQ +d+---+ -Cx +S
Ot r Or rO6

where d is the amplitude of the characteristic waves and C is the shear stresses in x-

direction.

=[,a. 2 +(& + &)/2]/C 2

= udl + (_'s - ,;q)12C

= vd, + p 2 3

= wd, +p2 4

1 2

=_(u +v 2 +w2)*d_ +pud 2 +pvd 3 +pwd, +(4 +,;11)/[2(7'-1)]

& = (u-c)(_-_Px- PC_xx)

av
=UTxx

Ou&=(u+c)( - p C-_x)

. 2ap
& =utc

Ow

Ox

For

and

equations are obtained for the characteristics running in r-direction at rm_x.

nonreflecting outflow B.CS, all the incoming characteristics are set equal to zero

the outgoing characteristics are calculated from the interior points. Similar

In the
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plane of intersection, both characteristic equations are applied. In the plane of

symmetry at 0--0 and 0--_, symmetric B.CS are applied.

ii. Outflow Boundary [proposed by Rudy and Strikwerda (1980)]:

In these boundary conditions, a pressure correction term is added to the incoming

waves in order to keep the pressure at the outflow close to the mean value. So, the

incoming wave will be corrected as follows:

2 5 = K(p - p,,)

or(l- M_.x)C
where K =

L

Mm_, is the maximum Mach number in the flow field, C is the local speed of sound, L

is a characteristic dimension of the domain, and _ is nonreflecting parameter ranges

between zero and one.

iii. Buffer Domain B.CS:

The buffer - domain technique was proposed by Streett and Macaraeg (1989). The

technique is based on gradually reducing the ellipticity of the Navier-Stokes equation.

The sources of the ellipticity in the equations are the streamwise shear stresses and the

pressure terms. To deal with these sources, the streamwise viscous terms and the

pressure derivative in the streamwise direction are smoothly reduced to zero through

multiplication by the following attenuation function:

I j_ N b ,,,S t = [l+tanh{4(1-2 _--_--_b)tl

where Nb marks the beginning of the buffer domain and Nx marks the outflow

boundary location.
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iv. Perfectly Matching Layer:

In this technique, a region is added at the boundary as shown in figure (4.1) to damp

the disturbance. In this region of the domain, exponential damping terms are added to

the governing equation (2.1) of the form:

aQl 0(F-F )
-_ _-o'xQ1 =0

,9t _x

_Q2 1 _r(G-G_)
--_ + o',.Q2 =(S-S,_)

_t r _ r

Q:QI+Q2+Q,,

where o"x = o'._ (_-f--hx) B"

where Omx is the maximum value of o, Lb is the length of PML and x* is the beginning

of the Layer. Q,., F,,, G,, and S m denote the mean flow variables.

Ox=O Ox:_'O

o:o

Figure (4.1): Computational Domain
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5. Noise Calculations:

a. Mathematical formulations:

The jet noise and the pressure disturbance will be calculated in the far field using the

linearized wave equation. The linearized Euler equations in cylindrical coordinates may

be written as:

_u 1 bp

3t /9,. _x

0v 1 bp

0t p,. Or

Ow 1 Op

Ot rp,. 30

_p 1 .lOw v Ov Ou.
-_- + TIT.2 _----z- +- +7-- + 7-) = 0
Ot M o r _O r Or Ox

(5.1)

Eliminating the velocity components from the last

equation

1 O2p 1 0V 02p _2p.
32p 1 (r 2 _--- --z--+ ---_---_-+ --_-_ ) =0
Ot 2 p,.M 2o 302 r Or Or dx

where p,. is the free stream mean density

ui , TOis the free stream temperature
and M o =

equation, we obtain the wave

(5.2)

The wave equation (5.2) is solved with boundary conditions at r=-ro and at the far field.

At r=ro the pressure is known as function of time, azimuthal direction and axial position

from the direct numerical simulation code and the pressure is applied as Dirichlet

boundary condition.

po= p(x, ro,0, t) (5.3)

At all other boundaries, the following radiation boundary condition derived by Tam

(1980) is applied:

1 _p +_P +P=0 (5.4)

CO Ot _R R

Where R is in the spherical coordinates and C o is speed of sound in the far field.
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R=_x2 +r 2

Then equation (5.4) may be written in cylindrical coordinates as follows:

1 ap+xap+rap+p= 0 (5.5)
C, _)t R Ox R Or R

For two-dimensional axisymmetric jet, the inhomogenous term is divided

by 2R rather than R (see two- and three-dimensional conditions by Roe 1989).

b. Numerical discretization:

The wave equation (5.2) is solved along with the boundary conditions (5.3) and (5.5)

using six order compact finite difference Pade scheme and fourth order Runge Kutta is

used to integrate the derivatives in time.
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6. Results:

The results are presented here for two-dimensional subsonic and supersonic

axisymmetric jet with high and low Reynolds numbers. Due to the limitations of the

computational facilities, three-dimensional jet simulation is under development. The

simulation is done for high subsonic jets at Mach numbers 0.8 and 0.85 while the

supersonic jet results is presented for Mach number equal 2.5.

Figures (1) through (3) represent the variation of the mean flow axial velocity, radial

velocity and temperature obtained from solving boundary layer equations for subsonic

jet Mj=0.85 and Re=105. The mean flow parameters are slowly varying with axial

direction due to the high Reynolds number used in the simulation. The most unstable

frequency and its subharmonics are obtained from the linear stability analysis for this

mean flow as shown in figure (4). The disturbance growth rate is decreasing with axial

direction due to the mean flow variations. The most unstable frequency calculated for

this flow is around 1.5 which gives Strauhal number of 0.477 (st=f dj/Uj).

A comparison between different McCormack type numerical schemes is done to decide

which scheme is suitable for the noise prediction. Figure (5.a) represent a comparison

between the linear stability theory, 4/2 and DRP/optimized schemes for too many points

per wave length. The two schemes give good results for 17 number of points per wave

length. As the amplitude of the disturbance becomes large, the results do not agree with

the linear stability because the linear stability theory is no longer valid. By decreasing

the number of points per wave length, some of these schemes is not performing well as

shown in figure (5.b). For 9 points per wave length, the dispersion and dissipation errors

are significant for the 4/2 scheme. Other schemes like 6/2, 6/4 and DRR/opt. still have

good accuracy.

Comparison between different outflow boundary conditions is introduced in figures (6)

and (7). The reference solution is the long domain results where the computational

domain is chosen to be long enough (x/q=100) such that the disturbance becomes steady

and periodic in the required domain (x/rj=60) before the disturbance hits the outflow

boundary. It is clear from figure (7) that the perfectly matching layer technique gives

16



minimum reflections at the boundary and the buffer domain gives some reflections but it

has less reflections than the characteristic boundary conditions proposed by Rudy

(1980).

The pressure disturbance contours are presented in fig. (8) for supersonic hot jet

(Mj=2.5) with zero free stream velocity and temperature ratio equal 2.25. It is clear that

the pressure disturbance propagates within a cone which means that the noise radiation

from the instability waves is confined within a wedge while the noise radiation from

subsonic jet has no specific pattern as clear from fig. (9). There is upstream influence of

the pressure waves for subsonic jet and the jet radiates noise in every direction. The

density and vorticity contours are shown in figures (10) and (11) where the shear layer

roll-up and the vortex pairings are clear.

The sound radiation by vortex roll-up and pairings for low Reynolds number subsonic

jet (Re=2500, Mj=0.8) is investigated in figures (12)-(14).

The jet is excited at the inflow by the most unstable frequency f and its subharrnonics f/2

and f/4. The Fourier transform of the energy amplitude is plotted in figure (12). It is

clear from this graph that the second subharmonic is dominant. The energy grows in the

linear region and then saturate at about x/rj=40 for the second subharmonic where the

source of the noise is located. The amplitude of the disturbance starts to decay after the

saturation where the jet becomes turbulent. The vorticity contours plotted in fig. (13)

shows the vortex pairs where the amplitude of the second subharmonic becomes large.

This means that the large vortical structures are responsible for the noise radiation.

Using the wave equation, the sound pressure levels in the far field are calculated as

shown in figure (14). No directivity pattern is predicted for the subsonic jet and the

maximum sound pressure level obtained for a disturbance of amplitude 0.001 at the

inflow is 140.5 decibels.
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